Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.12.08.570782

ABSTRACT

The SARS-CoV-2 BA.2.86 lineage, first identified in August 2023, is phylogenetically distinct from the currently circulating SARS-CoV-2 Omicron XBB lineages, including EG.5.1 and HK.3. Comparing to XBB and BA.2, BA.2.86 carries more than 30 mutations in the spike (S) protein, indicating a high potential for immune evasion. BA.2.86 has evolved and its descendant, JN.1 (BA.2.86.1.1), emerged in late 2023. JN.1 harbors S:L455S and three mutations in non-S proteins. S:L455S is a hallmark mutation of JN.1: we have recently shown that HK.3 and other "FLip" variants carry S:L455F, which contributes to increased transmissibility and immune escape ability compared to the parental EG.5.1 variant. Here, we investigated the virological properties of JN.1.

2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.10.19.563209

ABSTRACT

In middle-late 2023, a sublineage of SARS-CoV-2 Omicron XBB, EG.5.1 (a progeny of XBB.1.9.2), is spreading rapidly around the world. Here, we performed multiscale investigations to reveal virological features of newly emerging EG.5.1 variant. Our phylogenetic-epidemic dynamics modeling suggested that two hallmark substitutions of EG.5.1, S:F456L and ORF9b:I5T, are critical to the increased viral fitness. Experimental investigations addressing the growth kinetics, sensitivity to clinically available antivirals, fusogenicity and pathogenicity of EG.5.1 suggested that the virological features of EG.5.1 is comparable to that of XBB.1.5. However, the cryo-electron microscopy reveals the structural difference between the spike proteins of EG.5.1 and XBB.1.5. We further assessed the impact of ORF9b:I5T on viral features, but it was almost negligible at least in our experimental setup. Our multiscale investigations provide the knowledge for understanding of the evolution trait of newly emerging pathogenic viruses in the human population.

SELECTION OF CITATIONS
SEARCH DETAIL